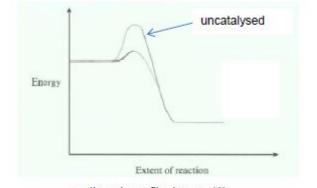
Mark Scheme - AS 2.1 Thermochemistry

Combustion of C and $H_2 = (2 \times -394) + (3 \times -286)$ = -1646 kJ mol ⁻¹ (1				
<u>ΔH</u> = -	-164	$6 - (-1560) = -86 \text{ kJ mol}^{-1}$ (1)		
(a)	(i)	$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$ (state symbols needed)	
		C(s) allowed as C(gr) or C(graphite)	[1]	
	(ii)	(if these elements were reacted together) other products would fo carbon does not react with hydrogen and oxygen under standard conditions		
(b)	(i)	energy = 100 × 4.2 × 54 =22680	[1]	
	(ii)	moles ethanol = 0.81/46 = 0.0176 (1)		
		energy change = $\frac{22.68}{0.0176}$ $\Delta H = -1290$ (1)		
		-ve sign and correct to 3 sf (1)	[3]	
(C)	inter	net value numerically larger (1)		
	heat	losses / incomplete combustion / thermal capacity of calorimeter red (1) no credit for energy loss	[2]	
(d)	(i)	$C_3H_7OH + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O$ (ignore state symbols)	[1]	
	(ii)	negative enthalpy change means energy in bonds broken is less t that in bonds made	han [1]	
	(iii)	more bonds broken and made in propanol and therefore more en released	ergy [1]	
(e)	any 4	from:		
	both conserve carbon / non-renewable fuel sources / fossil fuels / use renewable sources			
	(thes	e gas / liquid) suitable for different uses e.g. ethanol to fuel cars		
		economy gasification is less (some C lost as CO ₂) / CO ₂ produced i ication is a greenhouse gas	n	
	CO is	s toxic		
	gasif	ication at high temperature / enzymes need low temperature		
	enzy	me approach therefore saves fuel / gasification needs more energy	[4]	
	3 ma	ix if any reference to destruction of ozone layer		
		C candidate has selected a form and style of writing that is appropri <i>a</i> te ose and complexity of the subject matter (1)	[2] to	

Answer has suitable structure (1)

[2]

3	(a)	Otherwise a temperature change would occur on adding the acid which had nothing to do with the reaction [1]				
	(b)	(i) Best fit lines (1)				
		Temperature rise = 6.4 °C (1) (Take value from candidate's best fit lines)	[2]			
		(ii) Volume of acid = 26.0 cm ³	[1]			
		[If no best fit lines award 0 in (i) and accept 25 cm³ in (ii)]				
	(C)	Moles acid = 0.02425 (1)				
		Conc acid = <u>0.02425</u> = 0.933 mol dm ⁻³ (1) 0.026	[2]			
	(d)	Heat = 51 × 4.18 x 6.4				
		= 1364 J	[1]			
	(e)	$\Delta H = -\frac{1364}{0.02425} $ (1)				
		= - 56.2 kJ mol ⁻¹ (1)	[2]			
	(f)	Pipette / burette				
	(g)	No further reaction occurs (1)				
		The excess acid cools the solution (1)	[2]			
	(h)	Heat / energy is lost to the environment (1)				
		Insulation is improved e.g. lid on the polystyrene cup (1)				
			Total [14]			


5 (a) (i

(ii)
$$\Delta H = \sum \Delta H_r \text{ products} - \sum \Delta H_r \text{ reactants}$$
 (1)
= (-286 + 0) - (-368 + 0)
= -286 + 368 = (+)82 (kJ mol⁻¹) (1) [2]

or by a cycle where correct cycle drawn (1) correct answer (1)

[1]

(b) (i)

exothermic profile drawn (1)	
uncatalysed / catalysed line labelled (1)	[2]

(ii) I number of moles of benzene = 2000 [1]

Il mole ratio is 1 : 1 (1)

$$\therefore \text{ moles of phenol produced} = \frac{2000 \times 95}{100} = 1900 \text{ (1)}$$

mass = $M_r \times$ number of moles = $94 \times 1900 = 178.6 / 179 \text{ kg}$ (1)

alternatively

78 (g / kg) of benzene gives 94 (g / kg) of phenol (1) ∴ 1 (g / kg) of benzene gives 94/78 (g / kg) of phenol ∴ 156 (kg) of benzene gives 94 × 156/78 (kg) of phenol = 188 (kg) (1) but 95% yield ∴ <u>188 × 95</u> = 178.6 / 179 (kg) (1) [3] 100 (iii) Look for at least four relevant positive points [4]

e.g.

- the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
- the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
- the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
- the process is exothermic and the heat produced can be used elsewhere
- a relatively moderate operating temperature reduces overall costs
- high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar;

clarity of meaning QWC [1]

6	(a) (i)		$M_r (CuSO_4.5H_2O) = 249.7$		[1]
		(ii)	I.	Moles of copper(II) sulfate	
				= 0.250 x 250/1000 = 6.25 x 10 ⁻² moles (1)	
				Mass = $6.25 \times 10^{-2} \times 249.7 = 15.6 \text{ g}(1)$	[2]
			II.	1 mark each for:	
				Weighing method Dissolve copper sulfate in a smaller volume of distilled water Transfer to 250.0 cm ³ volumetric / standard flask Use of funnel Wash funnel / glass rod / beaker with distilled water into volumetric flask Add distilled water up to mark	
			•	Shake solution / mix thoroughly 5 max	[5]
	(b)	(i)	spec	C: organisation of information clearly and coherently; use of ialist vocabulary where appropriate der has a greater surface area (1) so gives a higher rate of reaction	[1] on
			(1)		[2]
		(ii)	Extrapolate lines from start (level at 21.3°C) and end (through points at 180-270 seconds) (1)		
			Tem	perature rise = <mark>6.0°C (</mark> Range 5.8-6.2°C) (1)	[2]
		(iii)	I.	Moles = 0.250 x 0.05 = 1.25 x 10 ⁻² moles	[1]
			II.	Zinc is the limiting reagent / Copper(II) sulfate is in excess	[1]
			III.	$\Delta H = -(50)x 4.18 \times 6.0 \div (6.12 \times 10^{-3}) (1)$	
				$\Delta H = -204902 \text{ J mol}^{-1}$	
				$\Delta H = -205 \text{ kJ mol}^{-1}$ (1)	[2]
			IV.	Enthalpy measures chemical energy, and as heat energy increases, chemical energy must decrease	[1]

Total [18]

7 (a) $\Delta H = \Delta H_2 + \Delta H_3 - \Delta H_1$ [1]

(b) $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightarrow NO(g)$ state symbols requires [1]

8 (a) percentage Be by mass = 5.03% (1)

division of percentage by Ar for Be and at least one other element as shown below (1)

- Al $10.04 \div 27 = 0.3719 \rightarrow 1.00$ Be $5.03 \div 9.01 = 0.5583 \rightarrow 1.50$ O $53.58 \div 16 = 3.3488 \rightarrow 9.00$ Si $31.35 \div 28.1 = 1.1566 \rightarrow 3.10$ molecular formula = Al₂Be₃O₁₈Si₆ or x=3 (1) [3]
- (b) Hess' Law states that where a reaction can occur by more than one route the total (i) enthalpy change for each route will be the same [1] $= +1.9 \text{ kJ mol}^{-1}(1)$ $\Delta H = -393.5 - (-395.4)(1)$ [2] (ii) (iiii) Kyran is incorrect as diamond is not the standard state of carbon [1] mass of diamond = 7.30 g (iv) 1 [1] 11 mass of graphite = 7.30 ÷ (93/100) (1) = 7.85 g (1) [2]

Total [10]

9 (a) (i)
$$\Delta H = 9 \times (-394) + 10 \times (-286) - (-275)$$
 (1)
= -6131 kJ mol⁻¹ (1) for correct value and (1) for correct sign [3]
(ii) temperature 298K, 25°C (1) pressure 1 atm, 101 kPa (1) [2]
(b) (i) $M_r = (9 \times 12) + (20 \times 1.01) = 128.2$ (1)
number of moles = 1.56 x 10⁻³ mol (1) [2]
(ii) $\Delta H = -50 \times 4.18 \times 42 + 1.56 \times 10^{-3}$ (1)
= -5626698 J mol⁻¹ = -5627 kJ mol⁻¹ (1) [2]

(iii) heat loss to environment / incomplete combustion / not standard conditions [1] Total [10]